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The adenine analogue, 2-aminopurine (Ap), is among the most da
extensively exploited fluorescent probes of DNA structure and
dynamicst As Ap forms a well-stacked base pair with?T, is a
nonperturbing fluorophore that is exquisitely sensitive to the DNA 4G
environment. For example, Ap has been used to monitor real-time
dynamics of mismatchésnd to probe interactions of DNA with
polymerase$, restriction enzyme%,and repair proteins.Despite
its wide utility, the consequences of photoexcitation of Ap in DNA
have not been determinédt is well-known that the fluorescence
of photoexcited Ap (Ap*) is markedly quenched in DNA in a
manner that depends sensitively on DNA structure and seqéeifce;
such quenchlng Is often attributed tc.) Sta.Ckmg .Of Ap within I.DNA' Figure 1. HPLC traces (monitored at 260 nm) before and after irradiation
Yet, both experiment&l? and theoreticat investigations provide (30 min) of APAAACPG duplexes. Expanded region to highlight the loss
compelling evidence that charge transfer (CT) between Ap* and of C*G as a function of increasing irradiation time (0, 5, 10, 15, 30, and 60
DNA bases is also responsible for quenching. Still, there is no direct min).
evidence, either as transient intermediates or photoproducts, toScheme 1 Formation and Reaction of PG Radical Cation and
confirm unequivocally a CT mechanism. Here we present evidence pna sequences Employed (Complements not Shown)
that Ap* initiates hole transfer through duplex DNA, leading to

oxidized products at a distance.
Our attempts to establish CT between Ap* and G failed to yield ﬁ,fLJ\ N =~ </ | *)\ /A Koper (” )\ ﬂ

N

any evidence of oxidative damag¢feWe rationalized that back “oer | |

electron transfer (BET) is significantly faster than trapping of the b crg ®

guanine radical cation (or radical) by water and/or oxygen. ll

Consistent with this explanation is our recent report that photoex- ~ 5-ATA CGG CAA AAA ApA®YG GCT CGT-3 o

cited DNA-bound thionine does not permanently damag® G, ~ S"ATACOOCAAAAL ARCTIG GCT CGTS N fLN,H o

despite the fact that it is known to undergo ultrafast( 260 fs) :,:ﬁiﬁgggiiii:iigﬂgggggﬁ, </N | N/)\N )J\/\OH

CT with G in DNA In that instance fast BETz(~ 760 fs}4 SLATA CGG CAAp AAA ACEPG GCT CGT-3' ‘Im | + 4G
eliminates net CT chemistry. To determine whether fast BET weg 1

inhibits oxidative damage by Ap*, we have taken advantage of a

recently reported hole trap based on the rapid ring opening of the that BET from ¢FG radical cation to Ap radical anion remains
cyclopropylguanine{°G) radical cation (Scheme 1j.While the competitive with ring opening. This is consistent with the notion
rate constant for ring opening has not been measured, it isthat DNA CT between well-coupled donors and acceptors is fast
expectetP!” to be orders of magnitude faster than trapping of relative to trapping®26even when trapping is accelerated, presum-

guanine radical¥>!8 Significantly, investigations dfFG in nucleo- ably to the ns-ps time scal@’

sides and in DNA confirm that its oxidation potential, base pairing,  Additional evidence for rapid BET comes from the fact that both

and stacking properties are similar to those of@. ApCCPG and ApAPG duplexes are essentially inert to photoinduced
Figure 1 presents HPLC traces of ApAAZG duplexes follow- decomposition (Figure 2). Since a single intervening base pair, either

ing 325-nm irradiation and enzymatic digestion to the nucleodfles. A—T or C—G, drastically diminishes trapping efficiency (relative
The photoinduced decomposition®@% nucleoside is unmistakable.  to longer dono+acceptor separations), it is difficult to argue that
Likewise, light-induced formation df?-(3-hydroxypropanoyl)dG poor stacking or alternative mechanisms of Ap* quenching are
("PG) can also be observed with similar kinetiéecomposition responsible. It is more likely that the close proximity ¢ and

of Ap was not detected by HPLC or fluorescerigé Also, no Ap accelerates BET such that it is much faster than ring opening
loss of°FG was observed following 325-nm irradiation of identical  of the PG radical catior¥® Therefore, the distance dependence of
duplexes where Ap was replaced by A, nor following digestion of the rate of BET is steeper than the distance dependence of the rate
Ap/CFG duplexes that were not irradiated. Single-strande&75/ of forward CT. This “inverted” distance dependence clearly
samples were likewise unreactive. These results provide the firstdemonstrates the defining role of BET in oxidative damage via
direct evidence for hole transfer from Ap* to another base, DNA-mediated CT; rapid charge separation needs not be associated

specifically a guanine residue, in duplex DNA. with high product yield.

Decomposition of PG indicates that the hole, transferred*tG We would also not expect the distance dependence of charge
from Ap*, can be trapped before BET. Since the quantum ¥teld injection, or the forward CT step, to parallel the distance dependence
for CPG photodecomposition is on the order of %Qit is likely of the product yield. For instance, the yield%6 oxidation is not
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Figure 2. Relative yield of°"G in Ap-containing duplexes as a function

of irradiation time: ApAAACFG (@), ApAACCFG (O), ApAAAAC CFG (m),
ApACFG (#), ApCCFG (©). The relative yield was determined by HPLC
analysis using 2deoxyadenosine as an internal standard. Lines represent
fits of the data to a single-exponential decay.

significantly influenced when the distance between Ap @fil is
increased by~7 A (Figure 2). In contrast, CT quenching of Ap*

by G is relatively sensitive to distanéén fact, we do not detect
quenching at distances14 A at ambient temperature. These results
are clearly a consequence of the fact that the competition between
BET and trapping modulates the observed product yield. Signifi-
cantly, the relative insensitivity of"G photodecomposition to
distance may suggest that this faster trapping reaction is still slow
on the time scale of charge equilibration. Hence, at longer distances
trapping becomes more competitive with BET.

The fundamental result presented here is that Ap* undergoes
CT with modified guanine residues in duplex DNA to generate
oxidative damage at a distance through DNA-mediated CT. CT
between Ap* and G must therefore be included in the interpretation
of quenching of Ap* in DNA. Correlation of CT rate constants,
derived from donor decay, with yields of CT products is only
possible with knowledge of the time scales of charge injection, BET,
and trapping. These essential features, revealed by investigation of
CT between DNA bases, apply to mechanistic descriptions of all
DNA-mediated CT reactions.
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